31 research outputs found

    Cardiac output estimated from an uncalibrated radial blood pressure waveform: validation in an in-silico-generated population

    Get PDF
    Background: Cardiac output is essential for patient management in critically ill patients. The state-of-the-art for cardiac output monitoring bears limitations that pertain to the invasive nature of the method, high costs, and associated complications. Hence, the determination of cardiac output in a non-invasive, accurate, and reliable way remains an unmet need. The advent of wearable technologies has directed research towards the exploitation of wearable-sensed data to improve hemodynamical monitoring.Methods: We developed an artificial neural networks (ANN)-enabled modelling approach to estimate cardiac output from radial blood pressure waveform. In silico data including a variety of arterial pulse waves and cardiovascular parameters from 3,818 virtual subjects were used for the analysis. Of particular interest was to investigate whether the uncalibrated, namely, normalized between 0 and 1, radial blood pressure waveform contains sufficient information to derive cardiac output accurately in an in silico population. Specifically, a training/testing pipeline was adopted for the development of two artificial neural networks models using as input: the calibrated radial blood pressure waveform (ANNcalradBP), or the uncalibrated radial blood pressure waveform (ANNuncalradBP).Results: Artificial neural networks models provided precise cardiac output estimations across the extensive range of cardiovascular profiles, with accuracy being higher for the ANNcalradBP. Pearson’s correlation coefficient and limits of agreement were found to be equal to [0.98 and (−0.44, 0.53) L/min] and [0.95 and (−0.84, 0.73) L/min] for ANNcalradBP and ANNuncalradBP, respectively. The method’s sensitivity to major cardiovascular parameters, such as heart rate, aortic blood pressure, and total arterial compliance was evaluated.Discussion: The study findings indicate that the uncalibrated radial blood pressure waveform provides sample information for accurately deriving cardiac output in an in silico population of virtual subjects. Validation of our results using in vivo human data will verify the clinical utility of the proposed model, while it will enable research applications for the integration of the model in wearable sensing systems, such as smartwatches or other consumer devices

    Arterial pulse wave modeling and analysis for vascular-age studies: a review from VascAgeNet

    Get PDF
    Aging; Arteriosclerosis; HemodynamicsEnvelliment; Arteriosclerosi; HemodinàmicaEnvejecimiento; Arteriosclerosis; HemodinámicaArterial pulse waves (PWs) such as blood pressure and photoplethysmogram (PPG) signals contain a wealth of information on the cardiovascular (CV) system that can be exploited to assess vascular age and identify individuals at elevated CV risk. We review the possibilities, limitations, complementarity, and differences of reduced-order, biophysical models of arterial PW propagation, as well as theoretical and empirical methods for analyzing PW signals and extracting clinically relevant information for vascular age assessment. We provide detailed mathematical derivations of these models and theoretical methods, showing how they are related to each other. Finally, we outline directions for future research to realize the potential of modeling and analysis of PW signals for accurate assessment of vascular age in both the clinic and in daily life.This article is based upon work from COST Action “Network for Research in Vascular Ageing” (VascAgeNet, CA18216), supported by COST (European Cooperation in Science and Technology, www.cost.eu). This work was supported by British Heart Foundation Grants PG/15/104/31913 (to J.A. and P.H.C.), FS/20/20/34626 (to P.H.C.), and AA/18/6/34223, PG/17/90/33415, SPG 2822621, and SP/F/21/150020 (to A.D.H.); Kaunas University of Technology Grant INP2022/16 (to B.P.); European Research Executive Agency, Marie-Sklodowska Curie Actions Individual Fellowship Grant 101038096 (to S.P.); Istinye University, BAP Project Grant 2019B1 (to S.P.); “la Caixa” Foundation Grant LCF/BQ/PR22/11920008 (to A.G.); and National Institute for Health and Care Research Grant AI AWARD02499 and EU Horizon 2020 Grant H2020 848109 (to A.D.H.)

    Noninvasive cardiac output and central systolic pressure from cuff-pressure and pulse wave velocity

    Get PDF
    Goal: We introduce a novel approach to estimate cardiac output (CO) and central systolic blood pressure (cSBP) from noninvasive measurements of peripheral cuff-pressure and carotid-to-femoral pulse wave velocity (cf-PWV). Methods: The adjustment of a previously validated one-dimensional arterial tree model is achieved via an optimization process. In the optimization loop, compliance and resistance of the generic arterial tree model as well as aortic flow are adjusted so that simulated brachial systolic and diastolic pressures and cf-PWV converge towards the measured brachial systolic and diastolic pressures and cf-PWV. The process is repeated until full convergence in terms of both brachial pressures and cf-PWV is reached. To assess the accuracy of the proposed framework, we implemented the algorithm on in vivo anonymized data from 20 subjects and compared the method-derived estimates of CO and cSBP to patient-specific measurements obtained with Mobil-O-Graph apparatus (central pressure) and two-dimensional transthoracic echocardiography (aortic blood flow). Results: Both CO and cSBP estimates were found to be in good agreement with the reference values achieving an RMSE of 0.36 L/min and 2.46 mmHg, respectively. Low biases were reported, namely -0.04 +/- 0.36 L/min for CO predictions and -0.27 +/- 2.51 mmHg for cSBP predictions. Significance: Our one-dimensional model can be successfully "tuned" to partially patient-specific standards by using noninvasive, easily obtained peripheral measurement data. The in vivo evaluation demonstrated that this method can potentially be used to obtain central aortic hemodynamic parameters in a noninvasive and accurate way

    The effect of the elongation of the proximal aorta on the estimation of the aortic wall distensibility

    Get PDF
    The compliance of the proximal aortic wall is a major determinant of cardiac afterload. Aortic compliance is often estimated based on cross-sectional area changes over the pulse pressure, under the assumption of a negligible longitudinal stretch during the pulse. However, the proximal aorta is subjected to significant axial stretch during cardiac contraction. In the present study, we sought to evaluate the importance of axial stretch on compliance estimation by undertaking both an in silico and an in vivo approach. In the computational analysis, we developed a 3-D finite element model of the proximal aorta and investigated the discrepancy between the actual wall compliance to the value estimated after neglecting the longitudinal stretch of the aorta. A parameter sensitivity analysis was further conducted to show how increased material stiffness and increased aortic root motion might amplify the estimation errors (discrepancies between actual and estimated distensibility ranging from - 20 to - 62%). Axial and circumferential aortic deformation during ventricular contraction was also evaluated in vivo based on MR images of the aorta of 3 healthy young volunteers. The in vivo results were in good qualitative agreement with the computational analysis (underestimation errors ranging from - 26 to - 44%, with increased errors reflecting higher aortic root displacement). Both the in silico and in vivo findings suggest that neglecting the longitudinal strain during contraction might lead to severe underestimation of local aortic compliance, particularly in the case of women who tend to have higher aortic root motion or in subjects with stiff aortas

    Estimation of Left Ventricular End-Systolic Elastance From Brachial Pressure Waveform via Deep Learning

    Get PDF
    Determination of left ventricular (LV) end-systolic elastance (Ees) is of utmost importance for assessing the cardiac systolic function and hemodynamical state in humans. Yet, the clinical use of Ees is not established due to the invasive nature and high costs of the existing measuring techniques. The objective of this study is to introduce a method to assess cardiac contractility, using as a sole measurement an arterial blood pressure (BP) waveform. Particularly, we aim to provide evidence on the potential in using the morphology of the brachial BP waveform and its time derivative for predicting LV Eesvia convolution neural networks (CNNs). The requirement of a broad training dataset is addressed by the use of an in silico dataset (n = 3,748) which is generated by a validated one-dimensional mathematical model of the cardiovasculature. We evaluated two CNN configurations: 1) a one-channel CNN (CNN1) with only the raw brachial BP signal as an input, and 2) a two-channel CNN (CNN2) using as inputs both the brachial BP wave and its time derivative. Accurate predictions were yielded using both CNN configurations. For CNN1, Pearson’s correlation coefficient (r) and RMSE were equal to 0.86 and 0.27 mmHg/ml, respectively. The performance was found to be greatly improved for CNN2 (r = 0.97 and RMSE = 0.13 mmHg/ml). Moreover, all absolute errors from CNN2 were found to be less than 0.5 mmHg/ml. Importantly, the brachial BP wave appeared to be a promising source of information for estimating Ees. Predictions were found to be in good agreement with the reference Ees values over an extensive range of LV contractility values and loading conditions. Therefore, the proposed methodology could be easily transferred to the bedside and potentially facilitate the clinical use of Ees for monitoring the contractile state of the heart in the real-life setting
    corecore